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AbICract-A scheme for solving planar elasto-plastic problems using the indirect boundary element
approac:h is presented. The area integrals over the plastic region contains sm,utarities of the order of (lIr).
The usual approach in evaluating these integrals is to extract the singularity contribution analytically and
evaluate the Cauchy's principal value numerically. In the present paper the area integratswhich assume a
linear plastic strain distribution are evaluated analytically over triangular cells. The form of analytical
expressions is such that the singularity contribution comes out automatically without the usual need of
neateetilll the cell (area) containing the singularity. It should be pointed out that the reaion over which the
plastic strain is assumed linear, need not be a triangle. This is especially useful when the peral form of the
elasto-plastic boundary is known apriori, e.g. axisymmetric problems. Good accuracies have been obtained
for number of problems. Two examples are included, namely the eiasto-plastic deformation of a circular
disc with a hole and a square. The circular disc is especially illustrative of the power of the method as the
problem is solved in Cartesian coordinates.

1. INTRODUCTION
Several authors[I-6] have extended the boundary integral method to elasto-plastic problems.
Most of the formulations, including the present one, consider the plastic strain distribution as
analogous to a body force field [8]. In two dimensional elastic problems with no body force
fields, the stresses can be written in terms of a line integral over the boundary of the region.
This line integral contains unknown functions which are determined finally from the boundary
conditions. In the presence of a body force field (unknown plastic-strain distribution in this
case) an additional area integral is introduced. It is this area integral that causes the major
difficulties in the solution procedure. Since the plastic strains are unknown at each load
increment the area of integration (the plastic region) is unknown. Even for assumed known
plastic strains, evaluation of the area integral is very difficult. These difficulties are further
exacerbated by the fact that the boundary integral equations must be solved for each load
in«ement. Several of these difficulties are addressed in the present paper. These include; an
improved evaluation of the boundary integral itself, an improved description of the plastic
strain distribution, a numerical evaluation of the singularity contributions in the area integrals,
and an improved algorithm for determining the elastic-plastic boundary. The numerical results
indicate that the boundary integral method is a viable alternative for elasto-plastic problems.

2. THEORETICAL DEVELOPMENT AND NUMERICAL EVALUATION
The elasto-plastic boundary value problem of interest is shown in Fig. I. Rp is the plastic

zone with elasto-plastic boundary Bp• R-Rp is an elastic region with external boundary B. Note
that B, Bp can intersect. Q is an arbitrary field point lying either in Rp or R-Rp where stresses
are to be evaluated. P is a point on B where the boundary conditions are to be satisfied. In the
preSent paper only traction boundary conditions are considered.

It has been shown[9, 7) for plane strain that the stresses can be expressed;

CTjj(Q) = tHij;t(Q, PB)!t(PB)ds +fL
p

ll;j;t(Q, P')Ft(P')dx' dy' - 2Gef~Q) ~j,k =x,y
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Fig. L Elasto--plastic boundary value problem.

Hii;k(Q, P') is an influence function and represents the ijth stress component at a point Q due to
a unit concentrated load at P' in the kth direction. The components of ~j;k are given in detail in
Ref. [10). It represents a fictitious traction distributed on B and is one of the unknowns in the
problem. e;f is the incompressible plastic strain distribution in Rp, while Fk (P') is given by;

(2)

where the comma implies difterention with respect to x, y and G is the shear modulus. Note
that Fk has the appearance of a body force field. The plastic strain distribution represents the
second set of unknowns in the probelm. For plane stress, the expression for the stresses is the
following;

(Jij(Q) = fB Hjj;k(Q, PB)!«(PB)ds +JJR
p

Hij;k( Q, P')Fk(P') dx' dy' - 2Ge;{(Q)

v'
- Dij2G-

I
-, ekl i,j,k =x,y. (3)
-v

Note that in the expression for Hij;k(Q, PI) Poisson'r ratio v should be replaced by v'f(1 + v')
where v' is the value for the plane stress formulation. Also, Fk for plane stress is;

(4)

Since the stresses given by eqns (1) and (3) represent the superposition of fundamental
solutions all equations of linear elasticity are satisfied. Note that plasticity can be assumed to be
a linear theory within each small load increment. In order to solve the boundary value problem
of interest, eqns (1) or (3) must satisfy the boundary conditions on B and the plastic ftow rule in
Rp (Prandtl-Ruess). The boundary conditions are;

(5)

where nj(P) are the direction cosines of the unit normal to the boundary atP. Pi(P) are the
applied traction components at P.

In the usual solution procedure either eqn (1) or (3) is substituted into eqn (5) generating a
boundary integral equation. A plastic strain distribution is assumed based on the solution for
the previous load step. This entire equation is then discretized producing a set of linear
algebraic equation in the unknown fk' Solving for fk> stresses can then be found from a discretized
version of eqn (1) or (3). These stresses can then be substituted into the plastic flow rule generating
a new plastic strain distribution.

The integral equations are solved again and the cycle repeated until convergence of the
plastic strain distribution is attained.
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A different approach is taken inthe present paper. Equation (I)t is first discretized for Q in
R and then substituted into the boundary condition by letting Q~ P. This involves the following
important ideas which represent the major contribution of the paper.

(1) More detailed boundary subdivisions for both Band Bp•

(2) A combination of piecewise linear and Fourier representations for f;..
(3) A piecewise linear representation of the plastic strain distribution.
(4) Numerical rather than the usual analytical evaluation of singularity contributions arising

both on B and in Rp•

We now proceed with the numerical evaluation of eqn (I). For convenience the following
quantities are defined.

o"i/(Q) = fB~j;k(Q, PB)!t(PB) ds

o,/(Q) =f fR
p

~i;k(Q,P')Fk(P) dx' dy' - 2Ge;f(Q)

U;j(Q) =u;/(Q) +u;f(Q).

(6a)

(6b)

(6c)

The evaluation of the line integral (eqn 6a) has been discussed in detail in Ref. (10) and is
discussed here briefty for completeness. The function Ik is assumed piecewise continuous over
M segments of the boundary (see Fig. 2). Each of these m segments is then further subdivided
into NIIt straight line segments. It is then expanded about the mid point of these straight line
segments using a Taylor series. Retaining the first two terms the integrations can be performed
analytically, yielding;

where M~Nk and M~Jtk are the first and second integrals of the inftuence function II;j;k and are
given in detail in Ref. [10). 8n is the value of s at the nth node. sn is defined by sn =
(8"+1 +8n)/(2).

A form for It is now assumed.
(8a)

where

P is a point where
boundary condition IS
imposed

m= I, 2, .. M

m

(8b)

Fig. 2. Example of boundary subdivision (N", = 4).

tDetails for the plane strain case only are presented. The analogous plane stress equations will simply be slaled.
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~ 21rqs ~ . 21rqs
fk2 := akO +~I akq cos S +~I bkq SIn S (8c)

where Sm is the value of s at the mth node, and S is the length of the discretized boundary.
The piecewise linear representation (8b) is used only in those boundary regions where large

gradients in fk are anticipated, for example, near corners and where the applied load has large
gradients. The results in Refs. [9, 10] have shown that a substantial saving is obtained in
computer time by use of combination representations over the conventional piecewise linear
representation. Note that the further subdivision of the mth segment into Nm parts not only
permits the Taylor series approximation but also permits a better representation of the
curvature at no increase in the number of unknowns. It should be noted that akO is retained only
for fk := fk2' otherwise a poorly conditioned matrix results, see Ref. [9].

Unlike the line integral, the region of integration for the area integral is not known.
However, once the plastic strain distribution is known, the elastic plastic boundary can be
found from non-zero values of the plastic strains. This idea, in fact, is used in the previously
described iteration cycle, i.e. a plastic strain distribution is assumed which implies the region
Rp• To evaluate the area integrals, eqn (6b), two assumptions are made.

The first assumption is that the plastic strains are piecewise linear over each of the N
regions Rn of the plastic zone, see Fig. 3.

(10)

Akl.<n) Bkl,<nl Ckl,<n l are easily solved [9] in terms of the nodal values of the plastic strains.
Although the nodal values can be any three non-collinear points, the corners n1, n2, n3 are the
usual selections, see Figs. 3 and 4. Substituting eqn (10) into (2);

(lla)

(1Ib)

As B~/) and C~/) are constant over each Rn, F~n) is constant over each Rn. Thus, from eqns (II)

and (6b)

al(Q):= f Fk<nlff Hjj;k(Q,P') dx' dy' - 2G el(Q) i,j,k:= x,Y·
n=l Rn

(12)

The second assumption is on the shape of the region Rn• Normally these regions are chosen
as triangles except for those cases in which the general form of the elasto-plastic boundary is
known, e.g. axisymmetric problems or when the elasto-plastic boundary intersects a curved
real boundary, e.g. Rn of Fig. 3. In such cases Rn is further subdivided into a set of Mn triangles
(see Fig. 4). This further subdivision permits a better representation of the curvature of
elasto-plastic boundary at no increase in the number of unknown plastic strains. That is, more
points are used to define the geometry than the plastic strain distribution. It is now possible to
perform the integration analytically over each triangle as given in the Appendix.

B

Fig. 3.
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n3

nl

rig. 4. Further subdivision of R,,(M. '" 5).

The final result is;

(13)

where

(14)

In eqn (13) all quantities are known except Fk") •Ff() is related to the nodal values of plastic
strain. These nodal values of plastic strain are determined iteratively as described earlier.

In the previous Refs. [1-5] the area integrals have been evaluated by first analytically
extracting the singularities present in the field. The plastic strain field is then assumed constant
over triangular subintervals. Difficulties are experienced if this approach is extended to the
linear plastic strain approximation. There the stress (and strains) must be evaluated at the nodal
points of the triangular elements causiq difticulties in evaluation of the Cauchy principal values
of the integrals. This difficulty is addressed in [11,12] by a numerical integration scheme. The
errors introduced in this scheme due to the approximation of the integrands as well as the
difticulties mentioned above are overcome in the present paper by evaluatiq the integrals
analytically for a piecewise linear plastic strain distribution. By taking proper care in the
framing the components of ~i;k it is possible to obtain the singularity contribution numerically,
see the Appendix. In the author's opinion the present approach also simplifies the computer
code.

To determine the plastic zone (and the elasto-plastic boundary) an iteration on the plastic
strains is necessary. For this to be efficient, a good first guess is important. In the present work
the elastic solution at the given load is used to determine the contour defined by the equivalent
stress equal to the yield stress. In general, this underestimates the plastic zone. The zone grows
with successive iterations to its final correct size. Precise position of the elastic-plastic
boundary is determined by interpolatiq on the equivalent stress. This approach, initial
underestimation, is quite efficient since unnecessary stress computations need not be done.

To complete the formulation the plane stress equivalents of eqns (11) and (13) are given
below.

and

F(n)::= - 20(B (II) +C (n» - 20-1I'-(B (n) +B (n»
x xx X1 1_ II' xx 11

F(II)::= - 20(B (II) + C (II» - 20~(C (II) + C (n»
1 X1 11 I-II' xx 11

N ~ ,

O"/?)(Q)::= ,*tt(lI) ~1~i;k(Q,Rm)-20el(Q)-Slj20 1~ lI,etl(Q).

(15a)

(1Sb)

(16)
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3. NUMERICAL EXAMPLES

Two examples are presented to illustrate the above technique. The first is a thin circular disc
with a central hole and a uniform tension at the outer radius. This problem is useful for
comparative purposes since a closed form solution for the stresses existsI13,14]. It should be
noted that the analysis developed in Section 2 does not utilize the symmetry of the problem, i.e.
the problem is solved in cartesian coordinate. The second example is that of a thin square
section under linearly varying uniaxial tension. This problem is useful for showing the effects of
discontinuous loading and corners and also has an exact solution.

Both problems will be solved assuming the dimensionless equivalent stress, equivalent
plastic strain relationship;

ep is non-dimensionalized with respect to the ratio of yield stress to elastic modulus while ae is
non-dimensionalized with respect to yield stress. This implies a linear strain hardening material
with a hardening slope equal to 1/2 the elastic slope. There is no loss of generality for either the
assumption of linear strain hardening or the particular choice of slope.

(a) Example I
A quarter section geometry of example 1 is shown in Fig. 5.
The applied traction is;

{~t cos 8
for r = I

Px for r= 10

{~, sin 8
for r = I

py
for r =10

(17a)

(l7b)

where at is the load parameter nondimensionalized with respect to the yield stress and 8 is the
angle measured from the x-axis in a counterclockwise direction. The principal stresses
are[13,14]

where

and

a, +A ( 1) 11' 1l'arr=~ 1-; -2 I g(r)dr+ 2,-2 l,-2g(r)dr

at+Ap ( 1) 11' 1l' --2 daee= 0.99 1+; -2 jg(r)dr- 2,-2 I rg(r) r

arB =0

1110

A p =2 I (1-0.0l,-2)g(r)dr

(18a)

(18b)

(18c)

(18d)

(J'", aM and (J',e are the radial, tangential and shear stresses respectively, and e,! and eel are the
radial and tangential plastic strains. To evaluate the integrals in eqn (18), the plastic strains are
assumed to vary linearly in small intervals of r. The size of intervals are 0.01 for 1~ r ~ 1.5,0.1
for 1.5 ~ r ~ 6.5 and 0.5 for 6.5 ~ r ~ 10. The problem is solved iteratively as described in Ref.
[14] and the solution is then used for comparison with the strsses obtained using the method of
Section 2.
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2.5

10

Fig. 5. Example I; circular disc with central hole.

To solve the problem using the boundary integral method, the unknown function It in the
line integral is approximated by only a Fourier series, eqn (8c) (QJ =3, Q2 =4), on each
boundary. Each boundary is divided into 8 intervals subtending 45°, M = 16. Each interval is
further subdivided into 12 sub-intervals Nm =12, for all m. The total number of unknowns is 32.
The problem is solved for values of the load parameter, (a,) of 0.495 (initial yield at the inner
boundary), 0.6, 0.7,0.8 and 0.9. Estimates of the zone size for purposes of initiating the iteration
cycle at a given load are circle of radius r = 1, 1.15, 1.4, 1.6,2.0 and 2.5. These correspond to
the load parameters given above and are based on the elastic solution. This is shown in Fig. 5.
On each circle 24 points (nodes) are chosen at which plastic strains are to be determined. Two
successive nodes (for example 24 and 1) subtend an angle of 15°. The region bounded by two
successive circles and the 15° segment is divided into two regions as shown in Fig. 5 (e.g. region
bounded by nodes 24, 1,48 and 1,25,48) and over each of these regions the plastic strains are
assumed to vary linearly. Each of these regions is further subdivided into two triangles, (Mil = 2).
This further subdivision is used for better description of the plastic zone geometry.

Once the convergence of plastic strains is obtained, the stresses are then evaluated along
8= 0° and (J = 22,50 for various values of r. Note that evaluating the singularity contribution
numerically permits stress evaluations at any point in the region (not just at the node points).

Principal stresses (T1Hh (T" are computed from the Cartesian stresses and compared with the
known solution. Errors in (T" for (J = 0°,22.5°, 1.05 ~ r ~ 9.95, are less than 0.64% everywhere
for load parameters a, ~0.9. Error in (T" are greater particularly near the inner boundary
because (T" must go to zero there. For 8 = 0, 22.5, 1.50< r < 9.95 errors are approx. 1.0% or
less. Near the inner boundary errors in (T" are greater for (J = 22.5° since both the boundary
condition and plastic strain convergence are satisfied at r = I and (J = 0, 15°,300. In Table I the
stress concentration factor at r = 1 and (J =0° is given. The stress concentration factor is

Table I. Stress concentration factor in example I

Load Par••• tar 0 ..-0.495 0 ..-0.6 0 ..-0.7 0 ...-0.8 11..-0.9

Theoretical 2.0202 1.8528 1. 7550 1.6948 1.6604

Calculated 2.0251 1.8600 1.7661 1. 7064 1.6746

Percentaqe
0.2400 0.3900 0.6300 0.6900"~~A. 0.8500
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defined as the ratio of the tangential stress 0'88 on the inner boundary to the load imposed a/ on
the outer boundary.

The results show that the variation in elastic-plastic boundary with () is negligable. It was
found that the equivalent stress was not equal to one (yield stress) at any of the mesh circles
shown in Fig. 5. The actual location of the elastic plastic boundary for each load was
determined by linear interpolation. Following this the plastic radii were found to be; rp = 1.000
(a/ =0.495), rp = 1.157 (a, = 0.6), rp = 1.341 (a/ = 0.7), rp = 1.620, (ab = 0.8), rp = 2.124, (a, =
0.9).

Table 2 is a summary of computer time and number of iterations. All calculations were done
on an Amdha1470V/8 computer (University of Michigan). Convergence of the plastic strains is
defined when all strains for two successive cycles, are within 0.1%.

(b) Example 2
The geometry, loading, and interval mesh subdivision for example 2 is shown in Fig. 6.
The applied traction is;

O.5a/ (I +i) x=5 -5::;)'::;5

px =
-O.5a/(1+i) x ==-5 -5::;.1'::;5

0 -5:5x::;5 .I' = ± 5

py =0 x==±5 .I' = ± 5

(I9a)

(19b)

Table 2. Computer time summary and number of iterations in example I

Matrix Generation
52.187

Tiae (in secs)

Solution Procedure "R.- O• 495 "R.- 0 . 6 "R.- 0 . 7 "R.=0.8 "R.- 0 . 9

Tiae (in secs)
4.575 17.850 14.227 31.700 34.355

Nu.ber of 1 6 5 6 6
Iterations

Fig. 6. Example 2; Thin square with linear uniaxial tension.
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where a/ is the load parameter again non-dimensionalized with respect to the yield stress. The
exact solution is easily found and is given by;

and

Uxx = O.5a,O +(y/5)) U yy =U xy =0 (20)

(21)

e,,/ =0.

The unknown function !k in the boundary integral is approximated by a combination
representation, e.g. (8). Four sine (Q. =4), four cosine (Q2 = 4) are used in Fourier series and 80
non-zero values of d~m) (M = 40) are used in the linear representation. Dol in (8c) is taken as zero as
discussed previously. Thus, the total number of unknowns is 96.

Table 3 shows the boundary discretization and location of points where the boundary
conditions are to be satisfied along x = 5. The other boundaries are identical. Note that at each
corner two non-zero values of dt) are permitted.

The problem is solved for load parameter values of al = 1.00 (initial yield at the upper
edge), 0/0.9), 0/0.8), 0/0.7), 0/0.6). Again, estimates of the zone size for initiating the iteration
cycle are based on the elastic solution for the above load parameters. These are horizontal lines
at y = 5, 4, 3, 2, I, O. Based on this the internal discretization is shown in Fig. 6. Plastic strains
are assumed to vary linearly over each of the triangles shown in Fig. 6 except for the corners.
There, plastic strains vary linearly over the corner squares since the present scheme cannot
compute stresses right at the corner.

Stresses are computed along y = x and are compared with the exact solution in Table 4.
Negative percentage errors imply the computed solution is less than the exact. Note that the
stresses have an error increase near the center. This is partly due to the boundary condition not
being satisfied at the midpoint of each side. Also sizeable errors occur near the corners.

In Fig. 7 a comparison of the computed and exact elastic plastic boundary is given for the
various load parameters. The computed boundary position is again found by linear interpolation
of the equivalent stress between the mesh lines shown in Fig. 6. In Table 5 a computer time
summary and required number of interation cycles is given. The convergence criterion is
defined as in example 1.

Table 3. Mesh geometry in example 2

y-coordinate y-coordinate- of point. vhere of boundary
d

k
(_I;. 0 condition point

1 -5.000 -4.9

2 -4.800 -4.7

3 -4.050 -4.0

4 -3.050 -3.0

5 -2.050 -2.0

6 2.050 -l.0

7 3.050 1.0

8 4.050 2.0

9 4.800 3.0

10 5.000 4.0

11 4.7

12 4.9
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Table 4. Percentage error in CT•• in example 2

(1t~l
1 1 1 1x-y "t~--0:9 "t- 0.8 "t=0:7 "t=Q.6

0.0 0.20 0.24 1. 04 3.03 8.07

0.5 0.13 0.31 1. 53 4.20 7.18

1.0 0.08 0.37 2.01 5.36 5.18

1.5 0.02 0.43 2.50 4.50 3.62

2.0 -0.03 0.48 2.99 4.31 1. 25

2.5 -0.08 0.54 2.40 1. 5 3 - 0.55

3.0 -0.14 0.63 2.40 -0.36 - 1. 5 3

3.5 -0.24 0.51 0.24 -1. 23 - 1. 76

4.0 -0.50 0.60 -1. 04 -1.53 - 1. 81

4.5 -1. 85 -2.25 -2.27 -2.71 - 3.49

4.6 -2.78 -3.25 - 3. 23 -3.74 - 4.61

4.7 -4.40 -4.92 -5.06 -5.65 - 6.55

4.8 -7.22 -7.81 -8.37 -9.12 -10.02

5r---------------....

4f-------

3 - - - -

a = I, o:e
21----
1---------------

I
a'-0:7

If--------

o 2 3 4 5

Fig. 7. Elastic plastic boundaries in example 2, ---- exact, -- boundary integral method.

The examples above demonstrate that the boundary integral method when properly for­
mulated is a viable alternative for the solution of elasti-plastic problems. The numerical
improvements developed in this paper namely; numerical extraction of the singularity con­
tribution both internally and on the boundary, subinterval surface and boundary discretization
for better geometry description, linear plastic strain representation, combination representation
(Fourier plus linear) of the fictitious traction distribution, and the improved estimate of the

Table 5. Computer time summary and number of iterations in example 2

Matrix Generation 28.059
Ti•• (in a.ca)

1 1 1 1
Solution Proc.dur. ", ..-1 ~ ..-0:9 (1 ..-0:8 "' ..-0:7 "' ..-0;6
Ti•• (in •• ca)

2.799 12.560 27.311 33.413 35.522

Nuaber of 1 12 22 25 21
Iteratione
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plastic zone all demonstrate the importance of attention to numerical detail in developing an
efficient, accurate code.

The above ideas can be extended to higher order shape functions for plastic strains. To do
this; analytical expressions for the integrals of the inftuence function Hijk with higher order
terms must be obtained. The reasons which lead the authors to believe that these analytical
expressions can be found are as follows.

The function Ii;;k (see Appendix, e.g. At) consists of a linear combination of three types of
functions, namely a logrithmic function, tan inverse function and functions which when
integrated the second time produce the first two functions. Further integration of logrithmic and
tan inverse function produce more logrithimic and tan inverse functions. Hence by successive
use of Green's theorem it is possible to obtain a line integral over the boundary of the triangle.
By transforming to the local coordinate system mentioned in the Appendix, analytical expres­
sions for the integrals of the inftuence function can be obtained.

It is obvious from the above discussion that a lot more work needs to be done when a
scheme is based on analytical integration rather than on numerical integration. In the opinion of
the authors, the saving in computer time and the higher accuracies which generally results from
analytical integration justifies this extra effort.
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APPENDIX

Definition of Jii:k and the numerical evaluation of the singularity contribution:
The function Jii :k represents the integrals of the influence function H;j;k over a triangle. The important steps in obtaining

the components of 1;i:k are outlined briefly. First the function !;i:k are determined such that

H =~,,,k ax' . (AI)

By use of Green's theorem, the surface integral is then written in terms of a line integral over the boundary of the triangle.
This line integral can be evaluated by transforming the global coordinate system to a local coordinate system of tangential
and normal components over each side of the triangle. Let BC (see Fig. 8) represent one of the sides of a triangle bounded
by nodes p and q.

By geometry it can be shown that

(A2a)

(A2b)

where rrqo ryq' are the components of rq• rq is positive when directed toward Q. The components of 1;i;k can be shown to be,
see Ref. [9}.

(A3a)

(A3b)

(A3c)
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where

where

and
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Fig. 8. Geometry needed for evaluation of !;i:k'

(A3d)

(Ale)

(A3f)

(A4)

1-\0
'Pqp

,,(2)=
'P qp

(ASa)

(A5b)

and

4>~t = - hqp (sin 3Bqp (3qp + cos 3Bqp log~) + f:r sin 3Bqp

,,(4) - h (. 3 I!$ 3 ) be.'Pqp - - qp sm Bqp og r
p

-cos fJqp {3qp + 2 cos 36qp

(ASc)

(A5d)

When the point Q is on one of the .comers of the triangle, the radial distance r goes to zero, and the function Ri;k tends
to infinity. In the function ]ii:k the term that will tend to infinity when the radial distance goes to zero is the logrithmic term.
However, this logrithmic term is being multiplied by the perpendicular distance hqp which also becomes zero when the
point Q is on the line bounded by nodes q and p. Thus the function Iij;. is always bounded. In the computer programs the
terms being multiplied by h." are not evaluated whenever hop is zero. When the point Qis inside or outside the triangle, all
terms appearing in eqns (A3HAS) are defined. Another important piece of information is obtained from the sign of hqp. [t
can be easily verified that when point Q is either on the boundary of the triangie or in the tria., all hqp (i.e. hw hn and
h13) are of the same sign. If the point Qis outside the triangle, then one of the hqp's has a different sign. This information is
used to determine when the term 2Ge;f(Q) must be subtracted from the stress expression u;f(Q) in eqn (\3).


